This product is marked Siemens, but is of Wagner construction.
He was prepared with two intake pipes that ended on two high sensitivity smoke detectors
In the pictures you can see the detectors, circuit boards, the flow sensors in the pipes.
Self-calibrating with the push of a button. It could adapt to many manufacturers, replacing the smoke detectors.
With a quick change could work with one and the air tube was controlled by two sensors simultaneously
Tag: smoke detector (Pagina 2 di 3)
18 aprile 1986: oggi devo fare manutenzione ad un impianto antincendio. Consiste in una centrale Cerberus SFB con 125 rivelatori FES5B e 12 Pulsanti manuali, una campana interna come allarme ed una badenia esterna:
Controlla della centrale se tutto è funzionante. Provo a mettere tutte le zone in esclusione per vedere se le lampadine di segnalazione sono funzionanti. Ne trovo due bruciate: sono lampadine speciali a doppio filamento che, anche se brucia il primario, il secondo sovradimensionato si accende con una leggera brace:
All’interno trovo il kit di ricambio in un contenitore verde e trovo le lampadine per la sostituzione (adesso sono gadget che non esistono più)
Cambiate le lampadine noto che le linee non vengono più alimentate con la classica tensione a 220 volt in corrente continua.
Classico guasto……….. la valvola del gruppo raddrizzatrice: tolgo
alimentazione, la sostituisco e subito riparte.
Ora rimane da provare i sensori con l’asta e il verificatore:
Inserisco la bomboletta e inizio con le prove.
Ci sono due tipi di sensori:
quelli montati su zoccolo da soffitto e quelli su zoccolo da parete.
Spero sempre che la lampadina di indicazione allarme funzioni altrimenti bisogna prendere la scala, togliere l’alimentazione e sostituirla. Preferisco che sia rotto il rivelatore: con l’estrattore montato sull’asta riesco a sostituire rivelatori fino a 7 metri di altezza:
Per fortuna siamo ancora nel 1985.
Pochi anni dopo il caso Chernobyl fu causa di leggi di manutenzione agli impianti di antincendio con rivelatori a doppia camera ionizzante (perciò radioattivi) molto severe dove veniva obbligato il cliente ad eseguire uno smear test per verificare l’eventuale perdita di materiale radioattivo. Gli ultimi rivelatori erano fatti con Americio 241 con decadimento lento ma, i primi erano al Radio che decadeva velocemente in un gas Radon, fonte di contaminazione radioattiva.
Lo smear test era semplice. Numerati tutti i sensori, si strofinava un dischetto di carta assorbente in tutte le parti del rivelatore, dello zoccolo e della parete nelle vicinanze (10 – 20 cm). Il dischetto numerato veniva mandato ad analizzare sotto un rivelatore geiger che rilevava eventuali perdite. Giustamente tale manovra veniva effettuata con guanti e mascherina con l’attenzione di lavarsi accuratamente le mani al termine:
Finivo in bellezza con i pulsanti: quattro vite da svitare e un pulsante da premere
Poi infine faceva un rapporto intervento dove indicavo quello che avevo fatto, se avevo trovato dei guasti e se avevo fatto delle sostituzioni.
Non occorreva preparare l’allegato B della manutenzione secondo la UNI11224. E neppure provare almeno la metà.
Era tutto molto più semplice e soprattutto molto più professionale:
Uno dei principali problemi che si possono verificare in un sistema di rivelazione incendi a campionamento di aria è la diminuzione del flusso d’aria dovuto alla parziale otturazione dei fori di prelievo dovuti alla polvere ambientale.
Questa diminuzione porta ad una segnalazione di guasto dell’apparecchiatura e un non rispetto dei parametri fissati nel progetto: facilmente si può alterare la classe di protezione degli ambienti e i tempi di risposta
In aiuto , esistono filtri d’aria nel sistema ma questi sono soltanto per proteggere il dispositivo laser di rivelazione.
In ogni modo la pulizia dei tubi e dei filtri viene citato anche dalla UNI11224:2019 come controllo obbligatorio nei punti 8.3.3.7 e 10.2.3.7
Procedimento consigliato
Per iniziare si spegne il dispositivo e si tolgono i tubi dall’apparecchiatura. Avvicinarsi ad ogni punto di prelievo e con uno spillo pulire il foro, facendo attenzione a non allargarlo (per i sistemi che prevedono fori calibrati in plastica pre-forata, se molto sporco, prevedere anche ogni 4-5 anni di sostituirlo).
Andare sui tubi e con un aspirapolvere, aspirare per qualche minuto all’interno del tubo.
Molto comodo è assemblare alla fino dell’aspiratore, un giunto in modo da poter attaccare il tubo con maggior tenuta. Oltre a recuperare lo sporco interno provocato con la pulizia dei capillari, si svuotano i tubi da eventuali “clandestini” (ragni, insetti,ecc).
Successivamente occorre soffiare all’interno del tubo (esistono aspirapolveri che diventano anche soffiatori, in modo di fare tutto con un unico dispositivo).
Anche qui starci per qualche minuto.
Questa procedura andrebbe fatta almeno una volta all’anno, durante il normale giro di manutenzione oltre che a controllare l’integrità dei tubi e che ogni foro aspirante non abbia una otturazione interna.
A dimostrazione che tale manovra è utile, ho eseguito due misure di flusso prima e dopo la pulizia (foto in basso)
Come vedete il flusso è notevolmente migliorato.
Inoltre aiuta nell’aumentare la vita del motorino di aspirazione.
(vedi foto . Posizionati a protezione uffici)
Motorino aspirazione aperto dopo 10 anni di uso
Ricordarsi di re-inserire i tubi nel dispositivo (facendo cura a non far cadere polvere nel foro aspirante)e ripristinare l’alimentazione.
Negli impianti fatti a regola d’arte viene inserito, poco prima dell’ingresso del tubo nel campionatore, un sezionatore: questo aiuta notevolmente i tecnici nello sfilaggio del tubo, soprattutto nei spazi più disperati come controsoffitti e sottopavimenti.
Negli anni 90 uscirono i primi sistemi di rivelazione fumi a campionamento aria.
La Cerberus Guinard mise in commercio questa centralina chiamata MZ2424: aveva tubi portanti da 32 a 40 millimetri di diametro bucherellati a distanza tale da coprire la stanza come fossero dei rivelatori puntiformi.
La ventola aspirava l’aria e questa veniva fatta passare attraverso i rivelatori ottici collegati sotto una centrale di rivelazione incendi ( in questo caso la CZ10)
Già a quei tempi, l’elettronica controllava attraverso dei sensori di flusso posizionati alla fine del tubo che il flusso rimanesse costante: un otturamento dei tubi o una rottura del tubo veniva prontamente segnalato alla centrale rivelazione incendio tramite degli ingressi appositi presenti nella base del rivelatore.
La regolazione veniva eseguita agendo sui dei trimmer e utilizzando il voltmetro sui puntali rossi-neri visibili in foto. Chiaramente la regolazione variava a secondo della quantità di fori fatti e dalla lunghezza del tubo.
Esisteva già allora la tecnologia a raggio laser ma con costi proibitivi. Provato e comparato alla rilevazione con i tradizionali rivelatori puntiformi, i tempi di risposta erano notevolmente minori rispetto alla rivelazione tradizionale.
La ventola era sovradimensionata rispetto quella di oggi e funzionante con alimentazione a 220 Vac. L’aspirazione era talmente forte che per togliere il coperchio dove erano contenuti i rivelatori, bisognava togliere tensione e fermare la ventilazione.
Già allora esistevano particolari kit per il filtraggio dell’aria e scatole con altri rivelatori per individuare il ramo dove proveniva il fumo. Praticamente avevano già tutto quello che hanno i rivelatori di campionamento di oggi. Chiaramente oggi la tecnologia laser si è abbassata di prezzo e le dimensioni sono notevolmente diminuite. Certamente quelle di una volta non avevano problemi di tempi di trasporto: con la potenza di aspirazione di quelle ventole non raggiungeva tempi superiori ai 30 secondi.
La centrale veviva già fornita di tutto il cablaggio interno (fili blu in foto). Mancavano solo i rivelatori.
Erano macchine grossolane e sperimentali. Sicuramente non sarebbero passate alla certificazione EN54.
Erano le precursori di una tecnologia nata negli anni 80 e che si sarebbe sviluppata nei successivi anni fino ad oggi.
Uno dei migliori rivelatori di fumo è sicuramente quello a camera ionizzante. E’ sensibile ai fumi invisibili da incendi covanti ma con un piccolo problema: contiene elementi radioattivi.
Gli ultimi trovabili in commercio contengono una doppia pastiglia a base di Americio 241 (Am241). Anche se ha un tempo di decadimento di 432 anni che lo rende pericoloso ma stabile, ha una leggera emissione di raggi alfa e gamma e soprattutto non decade in sostanze radiottive gassose. Infatti i primi rivelatori erano in Radio che, decadendo, si trasformava in Radon, gas radiottivo respirabile.
La quantità è passata da 150 Microcurie a 0,8 microcurie.
Nonostante tutto possono essere montati in Italia, ma necessitano di particolare e costosa manutenzione (smear test, rottamazione, trasporto con vettori autorizzati, imballaggio speciale, ecc). Per questo motivo negli ultimi anni sono stati smantellati quasi tutti.
Negli anni 70 – 80 hanno avuto un forte mercato. Il modello ottico ancora non era sensibile per fumi invisibile e poi era molto costoso. L’estrema semplicità di costruzione di questo modello lo rendeva molto economico e, fino al 26 aprile 1986, anno del disastro di Cernobyl, in Italia non c’erano particolari e costosi obblighi sulla manutenzione.
Il rivelatore è tecnologicamente semplice. Consiste in una camera d’aria a contatto con l’ambiente, mantenuta ionizzata tramite l’elemento radioattivo. Un voltmetro teneva monitorata la differenza di potenziale. Se nell’aria comparivano elementi dovuti a combustione, questo andava ad alterare il valore nel voltmetro e faceva scattare l’allarme. Sucessivamente vennero creati i rivelatori a doppia camera di ionizzazione, meno sensibile a falsi allarmi dovuti a umidità e variazioni di temperatura. Una camera era tenuta in aria pulita esente dai fumi ma con temperatura e umidità uguale a quella controllata. Il voltmetro misurava la variazione fra le due camere e non più su una sola. L’allarme partiva su differenza di tensioni e non su un valore campione.
Un rivelatore ottico di fumo funziona principalmente grazie all’effetto di Tyndall. All’interno della camera di analisi del fumo di un rivelatore sono presenti un diodo trasmettitore e un diodo ricevitore.
Al contrario di quello che si pensa, il trasmettitore e il ricevitore non sono allineate, ma sfalsati di una decina di gradi.
Per l’effetto Tyndall, in caso di fumo, si crea una leggera diffrazione della luminosità che rilavata genera lo stato di allarme.
Su questa base teorica nascono varie varianti tecnico-costruttive che migliorano le capacità del sensore. A secondo della qualità del sensore si possono aggiungere retine di protezione per evitare ingresso di animali: lo studio di particolari forme della camera evita le interferenze con ventilazioni ambientali o deposito di polveri.
Certe case costruttrici aggiungono un secondo led ricevitore diretto per garantire il funzionamento del sensore o quantizzare il grado di sporcizia del rivelatore.
Ci sono anche altre case che consigliono la periodica sostituzione della camera di analisi: hanno concepito sensori facilmente smontabili dove si sostituisce facilmente la camera.
Le migliori case costruttrici permettono di variare le soglie di pre-allarme e allarme del sensore (i cosiddetti rivelatori analogici di fumo), mentre altre hanno algoritmi integrati che elaborano l’andamento del segnale nell’arco del tempo e lo mettono a confronto con i dati memorizzati prima di generare allarmi.
Sommando a questo la presenza di un sensore termico che rileva l’innalzamento della temperatura (ma a questo punto abbiamo sensori ottico-termici) abbiamo un risultato di casistica di falsi allarmi pari quasi a 0.
Ultima miglioria trovata è lo studio nel tempo delle leggere interferenze dell’aria. Più ci sono interferenze significa locale “sporco” e il sensore abbassa lentamente la sensibilità.
Meno interferenza più aumenta la sensibilità. A questo punto abbiamo un sensore affidabile ma senza falsi allarmi.
Chiaramente questo tipo di sensore non è sicuramente economico, ma la differenza con quelli canonici non è poi così elevata.
NITTAN ST-P-AS
Smoke Sensor – Rivelatore di fumo analogico indirizzabile
Casa Costruttrice NITTAN
Rivelatore di fumo di tipo ottico e indirizzabile
Scelta del numero di indirizzo tramite dipswitch
website
Modello fuori produzione
Compatibile con Centrale Elmo anni 90 – Probabilmente adottava lo stesso protocollo di comunicazione su bus
Certificazioni: EN54 – CE – LPCB
Notifier M701 – Modulo di uscita – single output module
Marca – NOTIFIER
Tipo: Modulo di comando indirizzabile
SEZIONAMENTO
Rivelatore ottico di fumo Esser O-1371. ( Smoke detector )
Marca: Esser
TIPO: Analogico
SEZIONAMENTO
Rivelatore di calore BTA/206 (Heat detector)
Tipo: analogico indirizzabile
Fabbricazione: circa anno 2000
Ditta fabbricatrice: Sira elettronica (in seguito assorbita dalla Elkron che a sua volta è stata acquistata dalla Urmet)
Compatibile con centrale Area 54 sempre costruito dalla ditta Sira
Certificazioni: EN54- 6 – CE
Particolarità: Scheda trattata con cera o vernice oleosa per proteggere da umidità. Doppio sensore termico. Microprocessore della serie PIC. Relais Reed per test