Libera informazione sui sistemi di sicurezza

Tag: fughe gas

RS 485: connessione seriale standard

Appena si vuole ampliare la centrale antifurto o di sicurezza , si collegano interfacce col cosiddetto BUS di comunicazione. Non solo: anche le tastiere, le sirene, gli inseritori vengono collegati tutti in questo bus formato tipicamente da 4 fili: due dati e due di alimentazione.
Questo tipo di connessione è tipicamente una connessione RS 485, o una leggera variante customizzata dalle varie ditte.
Più precisamente una EIA RS 485 Half duplex.
Conoscendo le caratteristiche principali, i pregi e i problemi che possono sorgere per una errata installazione, si possono risolvere

molti problemi.
Attraverso questo bus passano molte informazioni del sistema e se il collegamento è perfetto e senza disturbi, tutti i pacchetti arrivano perfettamente a destinazione senza creare guasti o falsi allarmi.
Per vedere se il bus della tua centrale è un RS485, se non dichiarato dalla casa costruttrice, lo puoi riconoscere dalla presenza tipica di questo integrato (MAX 485) o similare. I vecchi impianti li montavano su zoccolo perché fragili, dovendo filtrare tutto quello che arrivava dal campo ed era più facile sostituirli.
Il concetto di comunicazione è semplice: la differenza tra la tensione presente sui due fili costituisce il dato in transito. Una polarità indica un livello logico 1, quella inversa indica il livello logico 0. La differenza di potenziale deve essere di almeno 0,2 V per un’operazione valida, ma qualsiasi tensione compresa tra +12 V e −7 V permette il corretto funzionamento del ricevitore.

PREGI

– Lunghezza del bus: arriva a fare fino a 1200 metri e può essere aumentata attraverso dei repeater.
– Semplicità di collegamento: 2 fili con terra (non obbligatoria ma permette di filtrare i disturbi da correnti indotte

PARTICOLARITA’ DA RISPETTARE

– Per avere la massima lunghezza deve essere lineare; il cosidetto “entra e esci”. In caso obbligato di una configurazione a stella, viene ridotta notevolmente la lungheza di azione (dimezzata se no di più)
– Per avere il miglior trasferimento di energia, deve essere bilanciata l’inizio e la fine con una resistenza tipicamente di 120 ohm. L’inizio non deve essere obbligatoriamente in centrale: si può partire con due rami distinti e in fondo mettere la resistenza. Solitamente queste resistenze sono integrate con le interfaccie di comunicazione: un dipswitch permette di inserirla o escluderla a seconda della posizione del bus
– Ogni interfaccia (o Device) deve avere una numerazione per distiguerla dalle altre. Il master (che di solito è la centrale) indirizza la comunicazione attraverso un numero per specificare che deve ricevere il messaggio o riceve un segnale con un numero che identifica il device di provenienza. La numerazione può essere definita manualmente agendo su dipswitch o rotori montati sul device (de definire precedentemente su carta), oppure la casa costruttrice battezza un numero sequenziale univoco ed ogni device ha un numero diverso dagli altri. Esiste un terzo sitema che è l’autonumerazione sequenziale, ma ultimamente è poco utilizzato. ATTENZIONE: un numero doppio sulla linea crea problemi e malfunzionamenti. Bisogna stare attenti, soprattutto con i modelli a settaggio manuale.
– Schermatura. Anche se non obbligatoria, è fortemente consigliata per lunghi tratti o passaggi attraverso locali con forti campi magnetici. Non fare l’errore del cosidetto anello di massa. Le schermature devono essere sempre con un collegamento lineare o stub, mai a loop
– Pulizia del segnale. Trattasi di un segnale che per essere “leggibile” deve essere il più pulito possibile. Se si hanno lunghe tratte di cavi, controllare se i valori resistivi e capacitativi sono dentro i termini di funzionamento indicato dalle case costruttrici. Per aumentare la sezione, non utilizzate il raddoppio del cavo: così facendo si cala il valore resistivo ma si aumenta notevolmente quello capacitativo.

CONCLUSIONE

Questi dettagli sono utili soprattutto con i nuovi sistemi che hanno collegati su questo bus dei dispositivi sempre più complessi e che hanno bisogno di più informazioni. Per fare ciò, è aumentata la velocità di dialogo tra device, richiedendo una maggior pulizia dei dati

Per correttezza esiste anche il collegamento Full-Duplex, a quattro fili, ma raramente utilizzato nel campo della sicurezza

Protocolli di comunicazione per centralizzazione allarmi (SCADA, DCS, BMS)

Per coprire la forte richiesta di comunicazione fra i vari impianti e postazioni di lavoro e gestioni delle segnalazione di allarmi e guasti, sono stati elaborati vari protocolli di comunicazione standard con i quali i vari dispositivi comunicano, anche se appartenenti ad ambienti e case costruttrici diversi.

LonWorks – (Lon Talk):

Sviluppato dalla Echelon Corporation, permette facilmente di far comunicare i dispositivi utilizzando molti tipi di connessioni fisiche dal doppino fino a TCI/IP. Diventato standard internazionale ISO/IEC 14908. Utilizzato nella automazione degli edifici dall’antintrusione alla illuminazione, passando per il condizionamento e riscaldamento. Nata negli anni 80, ha vari punti a suo favore, dal collegamento tipico su doppino non polarizzato molto economico alle alte possibilità di comunicazione

ModBus

Creato dalla Modicon (ora gruppo Schneider Electric), è un protocollo nato inizialmente per la comunicazione dei PLC su due tipi diconnessione: seriale su RS485 o RS232 e ethernet). Poi esteso a molteplici tipi di dispositivi
Ad ogni dispositivo viene assegnato un indirizzo unico e questa potrà comunicare con un indirizzo preso come master. Tutti i pacchetti di comunicazione hanno informazioni di controllo per assicurare l’esattezza del messaggio

Bacnet:

BACnet è un protocollo di comunicazione per reti di Building Automation and Control (BAC) che sfruttano il protocollo standard ASHRAE, ANSI e ISO 16484-5. Protocollo di interscambio dati “aperto”, senza alcun proprietario né diritto di utilizzo particolarmente impiegato nelle applicazione di regolazione e controllo degli impianti meccanici di riscaldamento, condizionamento e trattamento aria.

ONVIF (Open Network Video Interface Forum)

Protocollo di comunicazione standard per quanto riguarda il campo del TVCC digitale e il controllo accessi. Nata nel 2008 da Axis Communications, Bosch Security Systems e Sony Corporation, con l’obiettivo di accelerare l’adozione della tecnologia IP mediante la diffusione di uno standard globale e indipendente per le interfacce di rete.
Idea geniale perché rapidamente hanno aderito in poco tempo più di 40 ditte produttrici quali ASSA Abloy, Canon, Cisco, Dahua Technology, Hanwha Techwin (già Samsung Techwin), Hikvision, Panasonic, Pelco by Schneider Electric, Sunell, LG, Milestone.

CEI-ABI:

Protocollo nato nel 1979 per richiesta di ABI (Associazione Bancaria Italiana) che richiese ai principali fornitori di progettare un protocollo pubblico bi-direzionale e protetto.
Questo permette di gestire gli allarmi con un unico sistema di gestione pur comunicando con impianti di diverse marche

KNX –

Protocollo di comunicazione standard (EN50090 – EN13321-1 – ISO/IEC 14543). Uno dei punti di forza del sistema KNX, è che qualsiasi prodotto etichettato con questo marchio non è una semplice dichiarazione del produttore, ma si basa su prove di conformità effettuate dai laboratori di KNX. Durante questi test, si verifica non solo che il dispositivo supporti il protocollo KNX, ma che i suoi dati utili siano codificati secondo i tipi di dati standardizzati KNX. Ciò permette di realizzare impianti funzionanti anche mediante la combinazione di dispositivi di produttori diversi.

OPCserver

Nel 1995 alcune aziende (Fisher-Rosemount, Rockwell Software, Opto 22, Intellution, and Intuitive Technology) crearono un gruppo di lavoro per definire uno standard di interoperabilità tra prodotti dedicati all’automazione industriale.
Basato sul concetto di client-server, questo permette ai sistemi di supervisione di comunicare con i dispositivi in campo con un definito protocollo di comunicazione, garantito dalla fondazione che sorveglia e definisce lo standard ( OPC Foundation).
Le ditte che aderiscono devono seguire e rendere pubblico questo protocollo.
Le specifiche OPC si basano sulle tecnologie di Microsoft Windows: OLE, COM e DCOM.

DNP3 (Distributed Network Protocol):
DNP3 è un insieme di protocolli di comunicazione specificamente progettato per l’automazione di sistemi di controllo distribuiti, come quelli utilizzati nei settori dell’energia e delle utilities. DNP3 offre funzionalità avanzate per la comunicazione affidabile tra dispositivi SCADA, come il recupero automatico in caso di interruzioni di comunicazione e la gestione di grandi volumi di dati. È progettato per supportare reti di comunicazione eterogenee e può essere utilizzato sia su reti seriali che su reti basate su IP.

PROFIBUS:

è un protocollo di comunicazione utilizzato principalmente nell’automazione industriale. Esistono due varianti principali di PROFIBUS: PROFIBUS-DP (Decentralized Periphery) e PROFIBUS-PA (Process Automation). PROFIBUS-DP viene utilizzato per la comunicazione ad alta velocità tra dispositivi di campo e unità di controllo, mentre PROFIBUS-PA è progettato specificamente per l’automazione dei processi e supporta la comunicazione in ambienti intrinsecamente sicuri.

IEC 60870-5,

uno standard utilizzato sul mercato europeo per la trasmissione di dati tra diversi sistemi SCADA.

Per finire esistono protocolli di comunicazioni elaborati da grosse ditte costruttrici come Siemens, Omron, Mitsubishi, ecc